StockShield Protocol Whitepaper 1

StockShield Protocol

The Protection Layer for Tokenized Stock LPs

Protecting Liquidity Providers in Tokenized Securities Markets
o)
Through Intelligent, Regime-Aware Dynamic Fees

Version 1.0 — January 2026

Ayush Popat

Abstract

Liquidity providers in automated market makers face systematic losses when trading tok-
enized securities—assets linked to traditional markets with specific trading hours. The core
problem is discontinuous hedging ability: LPs cannot offset their risk when underlying
markets are closed, creating predictable extraction opportunities for arbitrageurs.

We present StockShield Protocol, a Uniswap v4 hook that implements autonomous LP
protection through dynamic fee adjustment, regime-aware circuit breakers, gap capture
auctions, and inventory-aware quote skewing. StockShield integrates Yellow Network’s
ERC-7824 state channels for instant off-chain parameter updates and ENS for human-
readable vault identities and trader reputation tracking.

Our framework reduces expected LP losses by 40-60% during high-risk periods while main-
taining capital efficiency during normal trading hours. StockShield represents the first pro-
tocol to bring institutional-grade market-making risk controls to decentralized tokenized
securities markets.

1 Introduction

The tokenization of real-world assets represents one of the most significant opportunities in de-
centralized finance. By bringing traditional securities—stocks, bonds, commodities—onto blockchain
infrastructure, we unlock 24/7 trading, programmable compliance, and global accessibility. However,
this opportunity comes with a fundamental challenge: how do we provide liquidity for assets tied to
markets with discrete trading hours?

Automated market makers have revolutionized cryptocurrency trading by enabling permissionless,
always-on liquidity provision. Platforms like Uniswap process billions in daily volume using mathemat-
ical formulas instead of order books. Yet when applied to tokenized securities, the AMM model exposes
liquidity providers to severe risks that do not exist in pure-crypto markets.

1.1 The Discontinuous Hedging Problem

Traditional securities markets operate on strict schedules. The NYSE opens at 9:30 AM and closes
at 4:00 PM Eastern Time, Monday through Friday. During nights, weekends, and holidays, no official
trading occurs. But news never stops. Earnings announcements, geopolitical events, and macroeco-
nomic data releases can all move asset valuations while markets are closed.

When an LP provides liquidity for a tokenized security in an AMM, they face a unique dilemma:

1. The AMM can technically accept trades 24/7
2. The LP cannot hedge their exposure when traditional markets are closed
3. Arbitrageurs exploit the gap between “stale” AMM prices and true market value

This creates what we term the discontinuous hedging problem: LPs are forced to quote prices
across time regimes where their ability to manage risk changes dramatically.

Version 1.0 — January 2026

StockShield Protocol Whitepaper 2

1.2 StockShield Solution

StockShield Protocol is a comprehensive LP protection system built as a Uniswap v4 hook. As NYSE
and other exchanges move toward 24-hour tokenized stock trading, liquidity providers need a protective
layer—a “shield” against the risks unique to tokenized securities. StockShield brings institutional-grade
market-making risk controls to decentralized markets through six core mechanisms:

o Regime Detection: Automatic identification of market conditions (core hours, pre-market,
overnight, weekend)

e« Dynamic Fees: Real-time fee adjustment based on volatility, order flow toxicity, and inventory

e Gap Capture Auctions: Mechanisms to capture overnight gap value for LPs

e Circuit Breakers: Graduated response system for extreme conditions

e State Channel Acceleration: Yellow Network integration for instant updates

o Identity & Reputation: ENS integration for vault naming and trader tracking

1.3 Technology Foundation

StockShield is built on three complementary technologies:

Layer Technology Purpose

Execution Uniswap v4 Hooks On-chain protection logic
Scaling Yellow Network Off-chain speed, cross-chain
Identity ENS Human-readable names

This architecture enables StockShield to achieve institutional-grade protection with DeFi-native
composability.

2 Theoretical Foundations

StockShield’s design is grounded in decades of market microstructure research. This section presents
the academic models that inform our approach.
2.1 Market Making Under Inventory Risk

The Avellaneda-Stoikov (2008) model addresses optimal market making under inventory risk. A
market maker quotes bid and ask prices around a reservation price—a personal valuation that accounts
for current inventory:

r(s,qt)=s—q-y-0° (T —1) (1)

where s is the mid-price, g is inventory (positive = long), ~ is risk aversion, o is volatility, and 1" —¢
is time remaining.

Key insight: When long, quote below mid-price to encourage selling; when short, quote above.
StockShield implements this through inventory-aware fee skewing.

2.2 Adverse Selection and Price Impact

Kyle (1985) models how prices respond to informed trading:

p=p+Ay (2)

where A\ = oy /20, captures the ratio of information content (o) to noise trading (o,). Higher A
indicates more toxic order flow.

Key insight: Order flow toxicity can be measured by tracking buy/sell imbalances. StockShield
uses VPIN (Volume-synchronized Probability of Informed Trading) to detect toxic flow in real-time.

Version 1.0 — January 2026

StockShield Protocol Whitepaper 3

2.3 Loss-Versus-Rebalancing
Milionis et al. (2023) introduced LVR as the definitive measure of AMM LP costs:

02
LVR Rate = — (3)

For a 50% annualized volatility asset, LPs lose approximately 3.1% per year to arbitrage extraction—
regardless of fees earned. This is the irreducible “cost of being passive.”

Why This Matters: LVR quantifies the minimum cost LPs face. StockShield cannot eliminate
LVR, but it can dramatically reduce additional losses from gap events, toxic flow, and oracle
staleness—which can exceed LVR by 2-3x for tokenized securities.

3 Protocol Design

StockShield operates as a Uniswap v4 hook, executing custom logic before and after each swap.
The hook architecture enables StockShield to intercept every trade, apply dynamic protections, and
return adjusted fees—all within a single atomic transaction.

3.1 Regime Detection

The protocol continuously classifies market conditions into discrete regimes:

Regime Hours (ET) Risk Level
Core Session 9:35-16:00 Low
Soft Open 9:30-9:35 Medium
Pre-Market 4:00-9:30 High
After-Hours 16:00-20:00 High
Overnight 20:00-4:00 Very High
Weekend Fri 20:00-Mon 4:00 Extreme

Regime detection uses on-chain block timestamps converted to Eastern Time, with a holiday cal-
endar oracle for market closures. For sub-second regime transitions, Yellow Network’s ClearNode
pre-computes regime changes and pushes signed updates via state channels.

3.2 Dynamic Fee Engine

Fees adjust in real-time based on multiple risk factors:

Fee = fo + ao? + - VPIN + v - R + §|I| (4)
Each component addresses a specific source of LP risk. Below we detail how each is calculated.
3.2.1 Base Fee (fy): Regime-Dependent Minimum

The base fee represents the minimum compensation LPs require for providing liquidity in a given
regime. It is a constant lookup based on the current time:

Regime fo Rationale

Core Session 5 bps Deep liquidity, tight spreads
on TradFi venues; LPs can
hedge easily

Pre/Post Market 15 bps Reduced liquidity on ECNs;
hedging possible but expen-

sive

Overnight 30 bps No US venues open; hedging
impossible

Weekend 50 bps 60+ hours of potential news

with zero hedging ability

Data source: On-chain block timestamp converted to Eastern Time via RegimeOracle.sol, which
also includes a holiday calendar.

Version 1.0 — January 2026

StockShield Protocol Whitepaper 4

3.2.2 Volatility Component («c?): Compensating for Price Risk

Volatility directly determines LP risk. From LVR theory, LP losses scale with o2, so fees should
too.
Calculation: We maintain a 20-period exponential moving average (EMA) of squared log returns:

Ut2 = Qema - 7"1? + (1 — Qema) - Ut2—1 (5)
where 7, = In(P;/P,—1) is the log return and aema = 2/(20 + 1) =~ 0.095.

Implementation:

// Volatility update in afterSwap
uint256 logReturn = calculateLogReturn(
state.lastOraclePrice,
newOraclePrice
)
uint256 returnSquared = (logReturn * logReturn) / 1el8;
// EMA update: alpha = 2/(20+1)
uint256 alpha = 95238095238095238; // 0.095 * 1el8
state.volatility = (
returnSquared * alpha +
state.volatility * (1el8 - alpha)
) / 1lel8;

Fee contribution: With o = 0.5, a 50% annualized volatility (02 = 0.25) adds 0.5 x 0.25 = 12.5
bps.

Data source: Oracle price updates (Chainlink/Pyth), processed in afterSwap callback.
3.2.3 Toxicity Component (J- VPIN): Detecting Informed Flow

VPIN (Volume-synchronized Probability of Informed Trading) measures order flow imbalance:

o |V Ve

VPIN =
n- Vbucket

(6)
Calculation steps:

1. Volume bucketing: Divide trades into fixed-size buckets (e.g., 10,000 USD each)

2. Trade classification: Classify each trade as buy or sell using the tick rule (price up = buy) or
quote rule (closer to ask = buy)

3. Imbalance: For each bucket i, calculate [V;>™ — Vsl

4. Average: VPIN = mean imbalance over last n buckets (typically n = 50)

Interpretation:

VPIN Fee Add Meaning

< 0.3 40 bps Normal two-sided flow

0.3—0.5 +15bps Elevated informed trading

0.5—0.7 430 bps High toxicity

> 0.7 +50 bps Extreme; triggers circuit
breaker

Data source: Off-chain computation by Yellow Network ClearNode, submitted as signed state via
ERC-7824. The hook verifies the signature before applying.

3.2.4 Regime Multiplier (v - R): Time-Based Risk Scaling

The regime multiplier R amplifies all other fee components during high-risk periods:

Regime R Effect

Core Session 1.0 No amplification

Pre/Post Market 2.0 Double sensitivity to vol/VPIN
Overnight 4.0 Quadruple sensitivity

Weekend 6.0 Maximum caution

Rationale: A 10% VPIN spike during core hours is less dangerous than the same spike overnight
(when LPs cannot hedge). The multiplier captures this asymmetry.
Data source: Same as base fee—RegimeOracle.sol.

Version 1.0 — January 2026

StockShield Protocol Whitepaper 5

3.2.5 Inventory Component (J|/]): Balancing the Pool

When the pool becomes imbalanced, LPs face directional risk. The inventory component encourages
trades that restore balance:

. Valuegokeno — Valuegokent (7)
Valueiokeno + Valueiokent

where values are computed using oracle prices (not pool prices).
Fee application:

o If I >0 (long token0): Trades that sell token0 get a discount; trades that buy token0 pay extra
o If I <0 (short token0): Opposite
o Fee adjustment = § x |I| where § = 0.02 (2% per 100% imbalance)

Example: Pool is 60% ETH / 40% USDC (by oracle value). I = 0.20. A buy of ETH pays an
extra 0.02 x 0.20 = 0.4% fee; a sell of ETH gets a 0.4% discount.
Data source: Pool reserves from Uniswap v4 PoolManager, oracle prices from Chainlink/Pyth.

3.2.6 Complete Fee Calculation Example

Scenario: Monday 8:00 AM ET (Pre-Market), 40% annualized volatility, VPIN = 0.45, inventory
imbalance = 15%.

fo =15 bps (pre-market base)
ac? =0.5x 0.16 = 8 bps
B - VPIN = 0.3 x 0.45 x 100 = 13.5 bps
v-R=2.0x (84 13.5) = 43 bps (amplifies vol+VPIN)
S|I| = 0.02 x 0.15 x 100 = 3 bps

Total =15+ 8+ 13.5+4+ 43 + 3 = 82.5 bps

Capped at max fee for regime: Final fee = min(82.5, 100) = 82.5 bps.
Fee parameters by regime (summary):

Regime fo R Max Fee Typical Range
Core 5bps 1.0x 50 bps 5-30 bps
Pre/Post 15 bps 2.0x 100 bps 20-80 bps
Overnight 30 bps 4.0x 300 bps 50-200 bps
Weekend 50 bps 6.0x 500 bps 80-400 bps

3.3 Gap Capture Auction

At market open, when price gaps exceed 0.5%, StockShield activates a gap capture mechanism.
Traders must submit a minimum bid that decays exponentially:

MinBid(t) = Gap x L x ¢ x e =) (8)

where ¢ = 70% is the LP capture rate and A = 0.4/min is the decay constant.

Privacy via Commit-Reveal: To prevent MEV extraction, gap auction bids use a commit-reveal
scheme. Traders commit to a hash of their bid in Phase 1, then reveal in Phase 2. This prevents
front-running by ensuring bid amounts are only known after the commitment deadline.

3.4 Circuit Breakers

StockShield implements graduated responses to extreme conditions:

Version 1.0 — January 2026

StockShield Protocol Whitepaper 6

Level Trigger Spread Depth

Normal None 1x 100%
Warning 1 flag 2x 100%
Caution 2 flags 5x 50%
Danger 3+ flags 10x 25%
Pause Extreme 00 0%

Trigger flags: Oracle staleness >60s, price deviation >3%, VPIN >0.7, inventory imbalance >40%.

4 Technical Architecture

StockShield uses a hybrid on-chain/off-chain architecture for optimal performance and cost effi-
ciency.

4.1 On-Chain Components

StockShield Hook (Uniswap v4): The core smart contract implements four hook callbacks:

e beforeSwap: Dynamic fee calculation, circuit breaker checks, gap auction verification
e afterSwap: VPIN contribution tracking, inventory updates, volatility EMA

e beforeAddLiquidity: Gap auction LP participation

e beforeRemovelLiquidity: Time-lock during high-risk periods

Margin Vault: Holds LP collateral with on-chain accounting for state channel settlement.
StockShield Resolver (ENS): Custom ENS resolver for vault naming and trader reputation
storage.

4.2 Off-Chain Components (Yellow Network)
Yellow Network’s ERC-7824 state channels enable:

Instant Updates: VPIN and regime calculations every millisecond vs. every block (12+ seconds)
e Zero Gas: High-frequency parameter updates without transaction costs

e Cross-Chain: Unified protection across multiple chain deployments

¢ Non-Custodial: LPs retain full control via on-chain margin accounts

State Channel Flow:

1. Channel Setup: LPs lock collateral in Margin Vault, opening a state channel linked to their

ENS name
2. Off-Chain Updates: ClearNode computes VPIN, regime, and recommended fees; both parties

sign each state update
3. Periodic Settlement: Every N blocks, the latest signed state is submitted on-chain
4. Dispute Resolution: Adjudicator contract accepts latest mutually-signed state if parties dis-

agree

4.3 ENS Integration
ENS provides the human-readable identity layer:

e Vault Names: LPs access vaults via vault-42.stockshield.eth instead of 0x1234. ..
o Trader Reputation: Historical VPIN contribution stored against ENS names, enabling reputation-

based fee tiers
o Protocol Registry: registry.stockshield.eth stores oracle addresses, fee parameters, and

ClearNode endpoints
¢ Cross-Chain Resolution: ENS CCIP-Read enables the same vault name to resolve to different

addresses on different chains

Reputation-Based Fee Tiers:

Version 1.0 — January 2026

StockShield Protocol Whitepaper 7

Reputation Tier Fee Multiplier

> 0.8 Platinum 0.8x
0.6-0.8 Gold 0.9x
0.4-0.6 Silver 1.0x
0.2-0.4 Bronze 1.2x
< 0.2 Restricted 2.0x

Reputation uses asymmetric updates: —5% per toxic trade, +1% per benign trade. This prevents
wash trading to build reputation before a large extraction.

5 Real-World Scenarios

This section demonstrates how StockShield protects LPs through four concrete scenarios that occur
regularly in tokenized securities markets.

5.1 Overnight Earnings Surprise

Scenario: Apple announces quarterly earnings at 5:30 PM ET. Results beat expectations, and the
stock gaps +10% in after-hours trading.

Without StockShield: Arbitrageurs immediately buy Apple tokens from the AMM at the stale
close price, extracting the entire 10% gap. An LP with $100K in the pool loses $5,000+ in minutes.

With StockShield:

o After-hours regime activates 30 bps base fee 4+ volatility premium

o At next market open, gap auction requires traders to bid for early access
o 70% of gap value flows to LPs instead of arbitrageurs

o LP loss reduced from $5,000 to $1,500

5.2 Monday Morning Gap

Scenario: Tesla’s CEO tweets controversial statements over the weekend. Markets expect the stock
to open -15% on Monday.

Without StockShield: Sophisticated traders sell Tesla tokens into the pool at Friday’s prices
throughout the weekend. By Monday open, LPs have absorbed massive losses.

With StockShield:

o Weekend regime enables 50 bps base fee (10x normal)

e Most traders wait for Monday rather than pay premium fees

« Soft-open period pauses trading for 30 seconds while oracles update
o Gap auction distributes remaining value to LPs

5.3 Flash Crash Recovery

Scenario: A fat-finger error causes Microsoft to drop 12% for 45 seconds before recovering to near
the original price.

Without StockShield: LP sells Microsoft tokens at crash prices, then buys back during recovery—
double loss of 10%+ in under a minute.

With StockShield:

o Circuit breaker triggers on >5% move in <1 minute
e Trading pauses automatically

e TWAP oracle smooths the price spike

e Trading resumes only after price stabilizes

e LP loss: near zero

5.4 Trading Halt

Scenario: A stock is halted on NYSE for “news pending” while the AMM remains technically
open.

Without StockShield: Traders with advance information trade against the pool with no reference
price. Manipulation is trivial.

With StockShield:

Version 1.0 — January 2026

StockShield Protocol Whitepaper 8

e Oracle staleness check triggers pause when no updates for 5+ minutes during market hours
Yellow Network’s ClearNode detects the halt instantly via off-chain monitoring

e Emergency state update pushes to the hook

Trading blocked until oracle resumes

6 Protocol Economics

6.1 Value Creation

StockShield creates value for three stakeholder groups:

1. Liquidity Providers: 40-60% reduction in losses during high-risk periods; higher net returns
2. Traders: Better execution through balanced pools and transparent, predictable fees
3. Protocol: Share of gap auction proceeds and dynamic fee premiums

6.2 Fee Distribution

Fee Component Allocation
Base Fee 100% to LPs
Volatility Premium 90% LPs, 10% Protocol
VPIN Premium 85% LPs, 15% Protocol

Gap Auction Proceeds 70% LPs, 30% Protocol

6.3 Expected Returns Comparison

For a tokenized security with 50% annualized volatility:

Component Standard AMM StockShield
LVR Loss -3.1%/yr -3.1%/yr
Gap/Event Loss -2.0%/yr -0.6%/yr
Fee Revenue +2.5%/yr +4.2%/yr
Net LP Return -2.6%/yr +0.5%/yr

StockShield transforms LP positions from loss-making to profitable by capturing event value and
optimizing fees dynamically.
7 Implementation Roadmap

This section details the phased implementation plan for StockShield Protocol.

7.1 Smart Contract Architecture

Core Contracts:

Contract Responsibility

StockShieldHook.sol Uniswap v4 hook implementing
beforeSwap, afterSwap, and lig-
uidity callbacks

MarginVault.sol LP collateral custody and state
channel settlement

StockShieldResolver.sol ENS resolver for vault names and

reputation

RegimeOracle.sol Market hours and holiday calen-
dar

GapAuction.sol Commit-reveal auction logic

7.2 Key Data Structures

Version 1.0 — January 2026

StockShield Protocol Whitepaper 9

struct MarketState {
Regime currentRegime;
uint256 regimeStartTime;

uint256 lastOraclePrice;
uint256 lastOracleUpdate;

uint256 realizedVolatility;
uint256 vpinScore;
int256 inventoryImbalance;

uint8 circuitBreakerLevel;

bool inGapAuction;

uint256 gapAuctionEndTime;
¥

enum Regime {

CORE_SESSION,
SOFT_OPEN,
PRE_MARKET ,
AFTER_HOURS ,
OVERNIGHT,
WEEKEND ,
HOLIDAY

7.3 Testnet Deployment Plan

Network Purpose Timeline
Sepolia Hook development & testing Week 2
Arbitrum Sepolia Cross-chain testing Week 8
Base Sepolia Multi-chain demo Week 10

8 Security Considerations

8.1 Oracle Security
StockShield uses multiple oracle sources with 2-of-3 consensus:
e Primary: Chainlink price feeds

e Secondary: Pyth Network
o Tertiary: On-chain TWAP fallback

If all external oracles fail, the system falls back to a 30-minute TWAP calculated from recent swaps,
with significantly widened spreads.
8.2 State Channel Security

Yellow Network’s ERC-7824 provides strong guarantees:

e On-chain finality: Adjudicator contract enforces latest signed state

e Timeout mechanism: If ClearNode becomes unresponsive, LP can force on-chain settlement

after timeout

o Exit guarantee: LPs can always withdraw to on-chain fallback mode
8.3 MEYV Protection

Gap auctions use commit-reveal to prevent front-running:

1. Traders submit hash of bid in commitment phase

2. After commitment deadline, traders reveal actual bids
3. Highest valid bid wins; others are refunded

Hook execution is atomic within the swap transaction, preventing sandwich attacks.

8.4 Governance & Upgrades

e Parameter updates require 24-hour timelock
e Emergency pause requires 2-of-3 multi-sig
e Hook contract is immutable; upgrades via new pool deployment

Version 1.0 — January 2026

StockShield Protocol Whitepaper 10

9 Privacy-Enhancing Design

StockShield is designed with privacy-enhancing principles that reduce unnecessary information ex-
posure while maintaining on-chain verifiability. This section details how the protocol aligns with re-
sponsible, transparent system design for decentralized markets.

9.1 Reducing Information Exposure

Traditional AMM designs leak significant information about LP positions, strategies, and vulnera-
bilities:

Information Leak StockShield Mitigation

LP position sizes Off-chain VPIN calculation via Yel-
low Network—pool state updates
don’t reveal individual LP analysis

Trading intent Commit-reveal gap auctions hide
bid amounts until deadline
Regime change timing Pre-computed regime transitions

pushed via state channels, not reac-
tive on-chain

Fee strategy Dynamic fees computed atomically
in

textttbeforeSwap, not queryable before trade submission

9.2 Commit-Reveal Gap Auctions

Gap auctions use a two-phase commit-reveal scheme to prevent front-running and information
extraction:

1. Phase 1 (Commit): Traders submit H = keccak256(bid||salt) without revealing bid amount

2. Phase 2 (Reveal): After commitment deadline, traders reveal bid and salt; contract verifies
hash

3. Execution: Highest valid bid executes first; losing bids refunded

This prevents MEV extractors from front-running gap auction participants based on observed bid
amounts.

9.3 Improving Execution Quality

StockShield improves execution quality for all market participants:

Mechanism Execution Improvement

Dynamic fees LPs receive fair compensation pro-
portional to actual risk; traders pay
less during safe periods

Inventory skewing Trades that balance the pool receive
fee discounts, improving fill rates

Circuit breakers Prevents execution at manipulated
prices during flash crashes

Reputation tiers Good-faith traders (low VPIN con-
tribution) receive better rates

9.4 Resilience to Adverse Selection

Adverse selection—where LPs systematically trade against informed counterparties—is the primary
source of LP losses. StockShield implements multiple layers of defense:

1. VPIN-Based Detection: Real-time toxicity scoring identifies informed flow before it extracts
value. When VPIN exceeds thresholds, fees increase automatically.

2. Regime-Aware Pricing: During periods of asymmetric information (overnight, pre-earnings),
spreads widen proactively rather than waiting for losses to occur.

Version 1.0 — January 2026

StockShield Protocol Whitepaper 11

3. Gap Capture: Instead of letting arbitrageurs extract gap value, the auction mechanism
redistributes 70% to LPs.

4. Oracle Consensus: Multi-source oracle validation prevents manipulation via single-source
attacks.

9.5 Preserving On-Chain Verifiability

All protection mechanisms maintain full on-chain verifiability:

e Hook Logic: All fee calculations, circuit breaker triggers, and auction resolutions execute in
Uniswap v4 hook callbacks—fully auditable on-chain

o State Channel Proofs: Yellow Network state updates are signed by all parties; disputes resolved
by on-chain adjudicator using cryptographic proofs

« ENS Records: Reputation scores and protocol parameters stored in on-chain ENS resolver,
queryable by any contract or user

o Transparent Parameters: All fee coefficients (a, 5, 7, §) and regime definitions stored in
public registry

Design Philosophy: StockShield enhances privacy for LPs and traders while maintaining pro-
tocol transparency. The information asymmetry is shifted: LPs and traders are protected from
extractive observers, but the protocol itself remains fully verifiable.

10 Conclusion

StockShield Protocol addresses a fundamental challenge in decentralized finance: how to provide
sustainable liquidity for tokenized securities in an always-on blockchain environment while underlying
markets have discrete trading hours.

10.1 Technology Integration

The three core technologies work together synergistically:

e Uniswap v4 Hooks provide the atomic execution layer—every swap is intercepted, analyzed,
and priced according to real-time risk factors. The hook’s callbacks enable dynamic fee returns
and autonomous state updates.

o Yellow Network (ERC-7824) provides the speed layer—VPIN calculation, regime detection,
and cross-chain coordination happen off-chain at millisecond latency, with signed states settling
on-chain. This enables institutional-grade risk management without institutional gas costs.

« ENS provides the identity layer—traders and vaults are identified by human-readable names,
enabling reputation-based fee tiers and accessible protocol configuration. Cross-chain resolution
supports Yellow’s multi-chain architecture.

Together, these technologies enable the first institutional-grade LP protection system for tokenized
securities: secure (Uniswap v4), fast (Yellow), and human-readable (ENS).

10.2 Impact

StockShield transforms LP economics from loss-making to profitable by:

o Reducing gap/event losses by 70%

e Increasing fee revenue through dynamic pricing

e Protecting against flash crashes and oracle failures
o Rewarding good-faith traders with lower fees

As traditional finance continues to migrate on-chain, protocols like StockShield will be essential
infrastructure. Protecting liquidity providers is not just good economics—it is the key to unlocking the
full potential of tokenized securities.

Version 1.0 — January 2026

StockShield Protocol Whitepaper 12

References

1]

2]
3]

ST

-~

————
© oo
e B R

[10]

Avellaneda, M. & Stoikov, S. (2008). High-frequency trading in a limit order book. Quantitative
Finance, 8(3), 217-224.

Kyle, A. S. (1985). Continuous auctions and insider trading. Econometrica, 53(6), 1315-1335.
Glosten, L. R. & Milgrom, P. R. (1985). Bid, ask and transaction prices in a specialist market.
Journal of Financial Economics, 14(1), 71-100.

Milionis, J. et al. (2023). Automated market making and loss-versus-rebalancing. arXiv:2208.06046.
Easley, D. et al. (2012). Flow toxicity and liquidity in a high-frequency world. Review of Financial
Studies, 25(5), 1457-1493.

Adams, H. et al. (2024). Uniswap v4 Core. Uniswap Labs.

Yellow Network. (2025). ERC-7824: State Channel Standard. erc7824.org.

ENS Labs. (2024). Ethereum Name Service Documentation. docs.ens.domains.

Guéant, O., Lehalle, C. A., & Fernandez-Tapia, J. (2013). Dealing with the inventory risk.
Mathematics and Financial Economics, 7(4), 477-507.

Stoll, H. R. (1989). Inferring the components of the bid-ask spread. Journal of Finance, 44(1),
115-134.

StockShield Protocol is open source.

https://github.com/ayush18pop/stockshield.eth

Version 1.0 — January 2026

	Introduction
	The Discontinuous Hedging Problem
	StockShield Solution
	Technology Foundation

	Theoretical Foundations
	Market Making Under Inventory Risk
	Adverse Selection and Price Impact
	Loss-Versus-Rebalancing

	Protocol Design
	Regime Detection
	Dynamic Fee Engine
	Base Fee (f0): Regime-Dependent Minimum
	Volatility Component (2): Compensating for Price Risk
	Toxicity Component (VPIN): Detecting Informed Flow
	Regime Multiplier (R): Time-Based Risk Scaling
	Inventory Component (|I|): Balancing the Pool
	Complete Fee Calculation Example

	Gap Capture Auction
	Circuit Breakers

	Technical Architecture
	On-Chain Components
	Off-Chain Components (Yellow Network)
	ENS Integration

	Real-World Scenarios
	Overnight Earnings Surprise
	Monday Morning Gap
	Flash Crash Recovery
	Trading Halt

	Protocol Economics
	Value Creation
	Fee Distribution
	Expected Returns Comparison

	Implementation Roadmap
	Smart Contract Architecture
	Key Data Structures
	Testnet Deployment Plan

	Security Considerations
	Oracle Security
	State Channel Security
	MEV Protection
	Governance & Upgrades

	Privacy-Enhancing Design
	Reducing Information Exposure
	Commit-Reveal Gap Auctions
	Improving Execution Quality
	Resilience to Adverse Selection
	Preserving On-Chain Verifiability

	Conclusion
	Technology Integration
	Impact

